References¶
Some of Hetero2d’s functionality is based on scientific advances / principles developed by various scientists. If you use Hetero2d in your research, you may wish to consider citing the following works:
Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen) : A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314– 319. doi:10.1016/j.commatsci.2012.10.028
Mathew, K., Singh, A. K., Gabriel, J. J., Choudhary, K., Sinnott, S. B., Davydov, A. V, Hennig, R. G. MPInterfaces : A Materials Project based Python tool for high-throughput computational screening of interfacial systems. Computational Materials Science, 2016, 122, 183–190. dio:10.1016/j.commatsci.2016.05.020
Zur, A., & McGill, T. C. Lattice match: An application to heteroepitaxy. Journal of Applied Physics, 1984, 55, 378–386. dio:10.1063/1.333084
Mathew, K., Montoya, J. H., Faghaninia, A., Dwarakanath, S., Aykol, M., Tang, H., Chu, I., Smidt, T., Bocklund, B., Horton, M., Dagdelen, J., Wood, B., Liu, Z.-K., Neaton, J., Ong, S. P., Persson, K., Jain, A. Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows. Comput. Mater. Sci. 2017, 139, 140–152.
Singh, A. K., Zhuang, H. L., & Hennig, R. G. Ab initio synthesis of single-layer III-V materials. Physical Review B - Condensed Matter and Materials Physics, 2014, 89, 1–10. dio:10.1103/PhysRevB.89.245431